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1. Abstract 

Projected climate change has stimulated increasing interest in the interactive effects 

between carbon dioxide (CO2) and temperature on crop yields. Crop yields are anticipated to 

decline if the earth continues to warm but increase as CO2 concentration rises. These two factors 

tend to work in opposite directions, and the interactive effect is not yet clear. There are also 

significant concerns that climate change is going to undermine global food security. Our purpose 

is to examine the quantitative relationship between CO2 and temperature on crop yields and to 

explore food security or insecurity in the presence of climate change. To do so, we perform a 

historical analysis on the crop yield trends in 57 selected countries from 1961 to 2013 on a yearly 

basis employing a fixed-effects panel regression model. The model is based on CO2 levels 

measured at Mauna Loa, Hawaii, and weighted-average temperatures in each country in 

corresponding years. We also incorporate other socio-economic factors, including purchasing 

power parity adjusted gross domestic product (PPP GDP) and education levels measured by 

Human Capital Index (HCI),that might affect crop yields. In addition, we control for other factors 

such as technological changes that contribute to increased yields. We conclude that the threat of 

food insecurity is overstated. 

Key words: Food security; CO2-fertilization, heat and crop yields; regression analysis 

JEL categories: O13, Q51, Q54  
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2. Introduction 

Adverse weather is perhaps the greatest risk to crop production, which makes the 

agricultural sector particularly vulnerable to climate change (Adams et al. 1996; McCarl et al. 

2016). With the adoption of the Paris Agreement (United Nations 2015) at COP21 of the UN’s 

Framework Convention on Climate Change (UNFCCC) and the subsequent special report on the 

need to prevent the globe’s mean surface temperature from exceeding 1.5oC (IPCC 2018), there is 

increasing concern about future food insecurity. The Paris Agreement recognizes “the fundamental 

priority of safeguarding food security and ending hunger, and the particular vulnerabilities of food 

production systems to the adverse impacts of climate change.”1 The main question of concern to 

be addressed in this study is the following: Is climate change a threat to food security?  

It is generally agreed that a greater concentration of atmospheric CO2 can result in a 

fertilization effect that increases crop yields (e.g., Stevenson et al. 2013; McLachlan et al. 2020), 

but it is also the case that, while more heat (higher temperatures) can benefit plant growth, yields 

will eventually fall as temperatures continue to rise. It is clear that the atmospheric concentration 

of CO2 has been increasing. Based on continuous measurements at Muana Loa, Hawaii (Rahmstorf 

et al. 2007; NOAA 2019), and shown in Figure 1, atmospheric CO2 has risen from 316.0 parts per 

million by volume (ppm) in 1959 to 408.5 ppm in 2018. Projections indicate that the CO2 

concentration could increase to some 500 to 1,300 ppm by 2100, depending on which of the several 

the Representative Concentration Pathways (RCP) that is chosen (Riahi et al. 2017), with the IPCC 

projecting an associated increase in global mean surface temperatures of 2.6°C to 4.8°C by 2100 

(IPCC 2013). The RCPs are based on integrated assessment models (IAMs) that project future 

                                                 
1 See https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement [accessed 10 December 2019]. 
To illustrate the concern food security, Porter et al. (2017) found that the five IPCC Assessment Reports to date show 
“a worrying change in food production for a range of scenarios of climate change, locations, crops, and levels of 
adaptation” (p.681). 

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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population, economic activity, energy use, land-use patterns, technology and climate policy. Four 

RCP scenarios are then used in global climate models to project potential warming. RCP2.6 

assumes that emissions of greenhouse gases, aggregated to a carbon-dioxide equivalent (hereafter 

simply CO2), will peak between 2010 and 2020, declining substantially thereafter. Under RCP4.5, 

emissions peak about 2040 and decline thereafter; under RCP6.0, they peak in 2080 and then 

decline; and, under RCP8.5, emissions are assumed to increase throughout the 21st century 

(Meinshausen et al. 2011). 

 
Figure 1: Atmospheric Concentration of CO2 Measured at Mauna Loa, Hawaii 

Source: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html  

Estimating a correct relationship between crop yields and climate variables is a crucial first 

step in addressing questions about food security. Therefore, the purpose of the current study is to 

examine the effect that changes in atmospheric CO2 and temperature have had on crop yields in 

the past, and what this might imply for the future. Based on our estimated relationship, we attempt 

to answer the question of whether food insecurity is an imminent threat. 

We focus on six main cereal crops: wheat, rice, maize, rapeseed (canola), soybean and 

sorghum. Wheat, rice and maize are the most important crops accounting for some 60% of the 

globe’s production of cereals (Rouf et al. 2016). Rice is a staple food for more than half of the 
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world’s population (Gnanamanickam 2009), although maize is the main staple in many regions of 

the world. Wheat is the most important cereal grain in temperate climates (Fischer 2008). Soybean 

is an important crop because it accounts for 29.7% of the world’s processed vegetable oils (Hungria 

et al. 2005), followed by rapeseed/canola (FAO 2018).2 Finally, sorghum is an important crop, 

partly because it is uniquely adapted to Africa’s climate – it is drought-resistant and able to 

withstand periods of waterlogging (Taylor 2003). Because of its resilience, sorghum will continue 

to play an essential role in the future as climate change continues. 

In Figure 2, we plot the average of the annual yields of the top twenty producers of each 

crop; the data indicate that yields of all six crops in the major producing countries have increased 

significantly since 1961. Then, we use the Berkeley Earth Surface Temperature (BEST) data series 

(Berkeley Earth 2019) to construct historical annual temperatures by crop and continent, spatially-

weighted by a continent’s countries that are in the global top-twenty producing countries of the 

crop in question. Temperatures are provided on a continent basis for each crop in Figure 3 for the 

period 1961-2018. Notice that temperatures in Africa are on average higher than those elsewhere. 

Further, the annual variation in temperatures exceeds the overall increase in temperatures over the 

period. Indeed, in some cases, there appears to be no trend in average BEST temperatures. This is 

an artefact of the method used to calculate the temperatures: the average surface temperatures of 

the top 20 producing countries of each crop are employed. This implies that the countries 

comprising the spatially-weighted continental averages changes from one crop to the next and 

perhaps even from one year to the next. 

The response of the yields of the six crops to projected changes in atmospheric CO2 and 

temperature is indicative of potential future food insecurity. Using FAO crop yield data, we  

                                                 
2 Compared to rapeseed, canola contains less erucic acid (<2%) and lower levels of glucosinolates. 
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Figure 2: Historical Yields of Maize, Rice, Sorghum, Soybean, Wheat and Rapeseed by Region 

Source: Authors’ Calculation based on FAOSTAT database (FAO, 2018) 
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Figure 3: Berkeley Earth Surface Temperatures Averaged for Each Crop Across the Top 20 

Producing Countries for Each Crop, by Continent, 1961-2018. 
Source: Berkeley Earth (2019) 
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investigate the impact of CO2 and temperature on crop yields and develop statistical methods to 

determine how past yields have responded to increases in atmospheric CO2 and climate/weather 

variables. The estimated relationships are then used to determine the yield response to changes in 

projected CO2 and temperatures (heat). 

The extent to which climate change impacts food security is ambiguous and varies among 

differing local climates. Developing countries are the least able to adapt to climate change and the 

agricultural sector in those countries is expected to be impacted more than that in developed 

countries. Developed countries are simply better able to adjust agricultural output in response to 

climate change through the use of irrigation, new crops or enhanced crop varieties (including 

genetically-modified varieties), information technology (e.g., drones that target specific weed 

infestations as opposed to broadcasting herbicides), improved farm management techniques, et 

cetera. Developed countries simply employ more inputs, more intensively than can farmers in 

developing countries. The current study takes the development level of each country across periods 

into account and controls for its effect. Consequently, the results will be useful for further analysis 

of crop-planting choices, policymaking, et cetera, in countries with different backgrounds. 

Considerable research in the past was devoted to investigating the impact of temperature 

and CO2 on crop yields. Schlenker and Roberts (2009) concluded that, for maize, soybean and 

cotton, crop growth increases gradually with temperatures up to 29 to 32 degrees Celsius, 

depending on the crop, and then decreases sharply for all three crops, ceteris paribus.  

Lobell and Field (2007) conducted a global scale, climate-crop yield study based on FAO 

data from 1961 to 2002. They investigated the statistical relationship between climate and crop 

yields, focusing on wheat, rice, maize, soy, barley and sorghum. The researchers employed gridded 

monthly temperature and rainfall data from the Climate Research Unit at the University of East 
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Anglia. As a dependent variable in their linear regressions, Lobell and Field used first differences 

in yield, with minimum and maximum temperatures, and precipitation, as explanatory variables. 

The use of first differences is to minimize the influence of slowly changing factors such as crop 

management. However, they did not consider the impact of CO2-fertilization and adaptation 

measures taken by farmers that could potentially offset the negative effects of higher temperatures. 

Thus, their study results might be considered an upper bound on the potential negative impacts of 

climate change on crop yields. They found that at least 29% of the variance in year-to-year yield 

changes was explained by the predictors for all crops, and it was very likely that the global 

warming from 1981 to 2002 has offset some of the yield gains from technological advances, rising 

CO2, and other non-climatic factors.  

Subsequently, Lobell et al. (2011) examined the impact of climate change on crop yields 

at the country level for the period 1980 to 2008. They incorporated data on monthly temperature 

and precipitation, crop production, crop locations, and growing seasons and used panel analyses 

of maize, wheat, rice and soybean for all countries. They found that climate impacts often exceeded 

10% of the rate of yield change, which indicated that climate changes were already exerting a 

considerable drag on yield growth. Like the earlier study, Lobell et al. (2011) did not consider the 

impact of CO2 fertilization and other factors such as technological advances in their statistical 

models.  

Challinor et al. (2014) conducted a meta-analysis of 1,048 observations from 66 studies to 

determine the separate impacts of adaptation, change in temperature, change in CO2, and change 

in precipitation on crop yields in tropical and temperate regions. They concluded that, if farmers 

adapted to the changed climate conditions, wheat, maize, and rice yields in temperate regions 

would increase as a result of higher temperatures, ceteris paribus, but production of maize and 

wheat would be adversely affected by higher temperatures in the tropics. Importantly, however, 
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the analysis showed that, while rice yields in the tropics would be unaffected by temperature 

increases between 0oC and 3oC, rice yields would increase by 10% or more if temperatures rose 

by upwards of 5oC, ceteris paribus. Indeed, temperature was the dominant explanatory factor 

explaining changes in crop yields, with precipitation and CO2 fertilization playing a minor albeit 

yield-enhancing role (contributing less than 15% of the overall change in crop yields). Similar 

results were reported by Moore et al. (2017), who also conducted a meta-analysis, but with 1,010 

point estimates from 56 studies. 

Finally, the U.S. National Climate Assessment report (USGCRP 2018) projects mid-

century (2036–2065) yields of commodity crops to decline by “5% to over 25% below extrapolated 

trends broadly across the region for corn, and more than 25% for soybeans in the southern half of 

the region.” It is important to notice, however, that the report does not suggest that crop yields will 

fall; rather, US crop yields are expected to continue trending upwards, but productivity growth 

will be below what it would be in the absence of climate change. 

The current study extends previous studies by considering temperature, CO2, technological 

advances, and other adaptations in our regression models, thus presenting a clearer picture of future 

food security. In particular, we examine the inferred impact of climate change on observed yield 

trends at the country level for the period 1961-2013 (the latest year for which complete FAO data 

were available). We also include spatially-weighted temperatures at country levels, and the 

interaction effects between CO2 and temperature.  

3. Methods 

Historical data on crop yields from the Food and Agriculture Organization (FAO) of the 

United Nations are used to examine the impact of CO2 and temperature on crop yields across 

countries. We employ crop yield data from the top twenty producers of each crop along with 
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surface temperature and CO2 data, and the socio-demographic characteristics of each country. A 

panel regression model is developed to observe variations in crop yields within periods and 

between countries. Our database consists of 57 countries for the period 1961 to 2013 and six crops 

(number of observations in parentheses): wheat (2,096), rice (2,013), soybean (1,932), maize 

(2,307), rapeseed (1,395), and sorghum (1,720). 

2.1 Data Collection 

Yields are spread extensively over the six crops and the different countries producing those 

crops. There is a lot of overlap in the top twenty producing countries – countries that are top 

producers of any given crop are likely to be a top producer of another crop as well. Summary 

statistics for all six crops are presented in Tables 1 through 3. 

Table 1: Summary Statistics for Wheat and Maize 

a Measured in $U.S.2011 millions adjusted for Purchasing Power Parity (PPP). See text for more information. 

Table 2: Summary Statistics for Soybean and Rapeseed 

a See note on Table 1. 

Table 3: Summary Statistics for Rice and Sorghum 

a See note on Table 1. 

 Wheat  Maize 
Variables mean sd min max  mean sd min max 

Yield (ton/ha) 2.631 1.672 0.314 8.281  3.098 2.311 0.261 11.37 
Temperature (°C) 16.53 7.569 -2.042 30.13  18.64 7.666 -2.158 30.13 

CO2 (ppm) 354.1 23.42 317.6 396.5  353.5 23.50 317.6 396.5 
Human Capital Index 2.200 0.813 1.009 3.726  2.071 0.780 1.007 3.718 
Real GDP per capitaa 11,368 11,251 425.9 51,548  9,152 10,340 425.9 51,548 

 Soybean  Rapeseed/Canola 
Variables mean sd min max  mean sd min max 

Yield (ton/ha) 1.502 0.757 0.175 5.947  1.567 0.802 0.202 4.287 
Temperature (°C) 18.22 7.486 -2.433 30.13  13.33 6.701 -2.071 26.82 

CO2 (ppm) 355.2 23.22 317.6 396.5  356.4 23.50 317.6 396.5 
Human Capital Index 2.140 0.758 1.013 3.718  2.524 0.739 1.016 3.726 
Real GDP per capitaa 9,837 10,660 425.9 51,548  14,972 11,723 528.1 51,548 

 Rice  Sorghum 
Variables mean sd min max  mean sd min max 

Yield (ton/ha) 3.589 1.918 0.481 10.39  1.960 1.484 0.126 7.600 
Temperature (°C) 20.19 6.246 4.697 30.13  20.00 7.008 4.697 30.13 

CO2 (ppm) 352.8 23.40 317.6 396.5  353.7 23.7 317.6 396.5 
Human Capital Index 1.971 0.712 1.007 3.718  2.018 0.739 1.007 3.718 
Real GDP per capitaa 8,036 9612 425.9 51,548  8,341 9684 425.9 51,548 
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We employ the spatially-weighted, location-specific temperature data from the Berkeley 

Earth Surface Temperature series (Berkeley Earth 2019). For smaller countries, we use the national 

average temperature, but, for larger countries such as Canada, China, the U.S. and Brazil, we 

employ production-weighted temperatures of the respective regions within which each crop is 

grown. For example, in Canada, wheat is grown in the prairies and central provinces; therefore, it 

makes sense to use production-weighted averaged temperatures from a select number of weather 

stations within these regions rather than a national average. Production maps provided by the 

United States Department of Agriculture (USDA 2019) are used to identify the proportion of 

production by area of each crop. In most cases, total production identified by the USDA does not 

sum up to 100%. In these cases, total production is adjusted to the sum of production percentages 

indicated by the production map, with the production of each region adjusted accordingly. For 

example, 60% of soybeans in Canada are produced in Ontario, 23% in Manitoba, and 16% in 

Quebec, with 1% of soybeans produced elsewhere in Canada. As the 1% produced outside the 

main provinces is ignored, the weights in the main producing provinces are adjusted slightly 

upwards so the main producing provinces are assumed to account for 100% of production. 

The Mauna Loa annual CO2 data are from the Earth System Research Laboratory of the 

National Oceanic and Atmospheric Administration (NOAA 2019). We assume that atmospheric 

CO2 is uniformly distributed and does not vary across countries. This is a strong assumption that 

is the result of data limitations. Yet we believe the model still provides useful insights regarding 

the inferred impact of climate change on crop yield trends. 

Finally, we make use of the Penn World Table (PWT) version 9.1 database from the 

University of Groningen (Feenstra et al. 2015). PWT is a database that summarizes a group of 

socio-demographic characteristics, including the relative inputs, outputs and productivity of 182 

countries for the period 1950 through 2017. We make use of the Purchasing Power Parity adjusted 
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Gross Domestic Product (PPP GDP) calculated using the output-based approach to control for the 

development of countries. The PPP GDP data are measured in millions of 2011 U.S. dollars. 

PWT’s human capital index (HCI) controls for education levels, which are indicative of 

technological development; it is based on years of schooling and returns to education. 

2.2 Modifications to the Data 

From 1961 to 2013, political changes in countries such as Sudan, the Soviet Union and 

Ethiopia have likely had negative effects on crop yields. Several modifications were made to the 

data to capture these and other extraneous factors that might have impacted yields: 

a) The USSR disintegrated into fifteen separate states in 1991. We employ data for the USSR 

for the period 1961-1991, and data for the Russian Federation for 1992-2017, both under the 

rubric of Russia.  

b) Ethiopia data consist of information for the Ethiopian PDR for 1961-1992, and Ethiopia for 

1993-2017.  

c) China is treated as a single entity referring to the mainland only, and ignoring data for Taiwan. 

d) South Sudan is ignored completely.  

e) Serbia and Montenegro are removed as a combined country and treated as separate entities.  

f) Yugoslav SFR is ignored as it no longer exists. 

There are some challenges that could reduce the accuracy of our results. First, the 

production map provided by the USDA is a rough approximation of crop production and national 

average temperatures for most countries. Based on geographic area, we determine which countries’ 

regional data to use and which national average data are based on whether the country exhibits a 

lot of variation in temperature. Second, we use annual temperature data that do not adequately 

consider the actual growing seasons for various crops. For example, in some countries two or more 

crops can be grown annually on the same parcel of land, but not in other countries.  
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Third, there are different varieties (cultivars) of the same crop. Crops such as wheat and 

rapeseed may be planted in fall (referred to as winter wheat/rapeseed) or spring; fall plantings 

spread machine operations to save costs and provide an impetus to plant growth in early spring, 

but run the risk that the crop is killed over winter. Different cultivars and planting times can lead 

to dissimilar responses to climate. Given lack of data, we are unable to account for these factors. 

Finally, as indicated above, the assumption that levels of CO2 are uniformly distributed 

across all global regions is rather strong. The CO2 data are provided by NOAA’s Carbon Cycle 

Group and uses measures of monthly mean CO2 measured at the Mauna Loa Observatory in 

Hawaii. Our results depend on how quickly and evenly CO2 spreads throughout the atmosphere. 

2.3 Fixed Effects Panel Regression Model 

For each crop, we employ the following regression model: 

Yit = β0 + β1 CO2 + β2 Tit + β3 CO2
2 + β4 Tit

2 + β5 CO2×Tit + itk

K

k
k X ,

1
∑
=

α + γt + ζt + uit, 

where Yit refers to the yield in country i at time t; CO2 refers to the average annual level of carbon 

dioxide in the atmosphere; Tit is the annual temperature (°C) in country i in year t; Xk,it refers to 

one of K socio-demographic control variables; βj (j=1, …, 5) and αk (k=1, …, K) are parameters to 

be estimated; γt and ζt are the time and country fixed effects, respectively; and uit is the error term 

that accounts for any variation caused by omitted variables. Quadratic terms for temperature and 

CO2, as well as an interaction term, reflect inherent and expected nonlinearities, even though these 

are not statistically significant for all crops.  

We utilize a fixed effects regression model to exploit variation across time periods within 

countries and between countries. This allows us to examine how crop yields have changed. The 

essence of fixed effects is that they control for time-invariant regressors that are excluded from the 

model. In the current context, this would include whether a country has a tropical or temperate 
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climate, and the soil quality within a region, because they do not vary much over time. This allows 

our independent regressors to be correlated with time-invariant components of the error term; that 

is, it allows for a specific type of endogeneity. It does not, however, control for time variant 

components of the error term.  

Determinants of crop yields such as solar radiation and precipitation are excluded from the 

analysis, because such data are not available at this scale. Since variations in solar radiation are 

related to temperature responses (Lean and Rind 1998), there is a potential endogeneity issue if 

solar radiation were included as an explanatory variable. Since we include both linear and 

quadratic terms, the fixed-effects model utilizes both within- and across-country differences in 

weather (Lobell et al. 2011). This approach overcomes omitted variable bias associated with fixed 

characteristics.  

4. Results 

Our interest is to uncover marginal effects, which we do by comparing our full model 

specification with two sets of controls to alternatives that have fewer control variables. To estimate 

the regression equations, we developed statistical programs written in R (R Core Team 2019, 

version 1.1.463) and Stata (StataCorp 2019, version 15.1). The regression results for each of the 

various crops are provided in Tables 4, 5 and 6.3 

3.1 Level Effects 

Consider the results for wheat in Table 4. In each of the regressions reported in the table, 

the signs on the coefficients on CO2 and temperature are positive and statistically significant, while 

those of the quadratic terms and interaction term are all negative and statistically significant, except 

                                                 
3 We also ran a version of the regression model that included all of the crop yield data, with dummy variables for crop 
types. However, the results turned out to be similar but statistically much weaker.  
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for the interaction term in model (1). This is precisely as expected. The marginal effects of CO2 

and temperature on wheat yields exhibit diminishing returns, with the effect of CO2 on yields 

further diminishing at higher temperatures. The effect of adding more controls in the regression is 

to increase the overall fit of the model (as indicated by the increase in adjusted R2, denoted R̅2). It 

also suggests that the effects of CO2 and temperature are overstated in the original regression and 

we control for this bias with the addition of GDP per capita and the human capital index.  

Table 4: Wheat and Maize Regression Analysisa  
                          Wheat                                               Maize                
Variables (1) (2) (3) (4) (5) (6) 
CO2 0.2220*** 

(13.49) 
0.2330*** 
(13.56) 

0.1870*** 
(11.19) 

0.0114 
(0.45) 

0.0196 
(0.80) 

-0.0323 
(-1.30) 

CO2-squared -0.0003*** 

(-11.32) 
-0.0003*** 

(-10.13) 
-0.0002*** 

(-10.13) 
0.0001*** 

(2.71) 
-0.0000 
(1.28) 

0.0001*** 

(2.74) 

Temperature 0.2430*** 
(6.26) 

0.1940*** 
(4.21) 

0.1450** 
(3.17) 

0.6220*** 
(9.20) 

0.2980*** 
(4.04) 

0.2460*** 
(3.38) 

Temp-squared -0.0033** 
(-2.03) 

-0.0033** 
(-2.06) 

-0.0036** 
(-2.31) 

-0.0027 
(-1.05) 

-0.0030 
(-1.19) 

-0.0021 
(-0.84) 

CO2 × Temp -0.0005 
(-6.71) 

-0.0004*** 
(-3.74) 

-0.0003** 
(-2.32) 

0.0018*** 
(14.31) 

-0.0008*** 
(-5.21) 

-0.0007*** 
(-4.74) 

Constant -42.83*** 
(-14.53) 

-42.41*** 
(-14.37) 

-35.85*** 
(-11.91) 

-11.81*** 
(-2.61) 

-9.03** 
(-2.04) 

0.28 
(0.06) 

Observations 2,096 2,096 2,096 2,096 2,307 2,307 

Adjusted R2 0.579 0.580 0.593 0.593 0.612 0.628 

Countries 46 46 46 51 51 51 

GDP/capita  no yes yes no yes yes 

Human capital no no yes no no yes 
a t-statistics are reported in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.01. 

If we consider maize, we find that the linear term for CO2 and the quadratic term for 

temperature are insignificant. It seems that the impact of CO2 on maize yields is weak, although 

yields do increase with higher temperatures. Overall, however, we are unable to uncover the full 

extent of these effects for maize, likely due to our limited CO2 data. This is discussed further when 

we examine the marginal effects of CO2 and temperature on yields. In this case, the addition of 

more controls, as indicated in column (4) of Table 4, does not increase R̅2 because, when the human 
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capital index is excluded, the number of observations increases from 46 countries to 51.  

Now consider the results in Table 5. We obtain similar results for soybeans as we did for 

wheat, and for rapeseed as we did for maize. Again, the signs on the linear drivers of yield are 

positive for soybean, but the quadratic and interaction terms are negative, indicating diminishing 

benefits and, eventually, a decline in yields. The estimated effect of the interaction between CO2 

and temperature is statistically significant, but small. In the case of rapeseed, yields are positively 

correlated with increases in temperature, but the role of increased CO2 is ambiguous as in the case 

of maize. Neither the linear nor the quadratic term is statistically significant, while the effect of 

the interaction between CO2 and temperature is small and not always statistically significant. 

Table 5: Soybean and Rapeseed Regression Analysisa  
                          Soybean                                               Rapeseed                
Variables (1) (2) (3) (4) (5) (6) 
CO2 0.0978*** 

(7.268) 
0.0998*** 
(7.430) 

0.0705*** 
(5.042) 

0.0192 
(1.344) 

0.0182 
(1.286) 

0.0233 
(1.514) 

CO2-squared -0.0001*** 
(-5.750) 

-0.0001*** 
(-6.171) 

-0.0001*** 
(-4.364) 

-0.0000 
(-0.280) 

0.0000 
(0.254) 

-0.0000 
(-0.0136) 

Temperature 0.139*** 
(3.791) 

0.0918** 
(2.336) 

0.0921** 
(2.371) 

0.0888*** 
(2.830) 

0.1680*** 
(4.571) 

0.1710*** 
(4.634) 

Temp-squared -0.0009 
(-0.661) 

-0.0010 
(-0.730) 

-0.0009 
(-0.647) 

-0.0023 
(-1.499) 

-0.0022 
(-1.486) 

-0.0023 
(-1.513) 

CO2 × Temp -0.0004*** 
(-6.503) 

-0.0003*** 
(-3.646) 

-0.0003*** 
(-3.906) 

-0.0002** 
(-2.492) 

-0.0004*** 
(-4.418) 

-0.0004*** 
(-4.482) 

Constant -18.86*** 
(-7.788) 

-18.59*** 
(-7.693) 

-13.43*** 
(-5.351) 

-4.3220* 
(-1.697) 

-5.1290*** 
(-2.019) 

-6.0110** 
(-2.190) 

Observations 1,932 1,932 1,932 1,395 1,395 1,395 

Adjusted R2 0.314 0.317 0.333 0.334 0.342 0.342 

Countries 45 45 45 35 35 35 

GDP/capita  no yes yes no yes yes 

Human capital no no yes no no yes 
a See notes on Table 4. 

For soybeans, the estimated parameter on the linear CO2 term falls significantly when the 

human capital control is added, indicating the presence of omitted variable bias in the regression 

models found in columns (1) and (2) of Table 5. Addition of the GDP/capita control has little 
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impact on the value of the estimated linear CO2 parameter. Finally, the statistical fits of the overall 

regression models (R̅2) for soybean and rapeseed are nearly half those of wheat and maize, further 

implying that there may be excluded variables that affect soybean and rapeseed yields. 

Finally consider the regression results for rice and sorghum in Table 6. Rice appears to be 

sensitive to increasing temperatures, but the CO2 terms are statistically significant (save for the 

interaction between CO2 and temperature) and the linear term for temperature is statistically 

insignificant. Surface air temperature may, however, be an inappropriate regressor in the 

determination of rice yields, perhaps because paddy rice grows partially submerged in water. 

Coupled with the country-invariant CO2 measure, we do not believe we can accurately measure 

this relationship for rice yields.  

As for sorghum, all coefficients reflect their expected signs and are similar to those found 

for other crops (except rice). The only statistically insignificant estimate is on the quadratic term 

for temperature; however, its magnitude is not dissimilar to previous regressions. All interaction 

effects in the sorghum regression are negative and statistically significant, suggesting that the CO2 

fertilization is less effective at higher temperatures. Likewise, the effect of an increase in 

temperature also diminishes at higher levels of atmospheric CO2.  
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Table 6: Rice and Sorghum Regression Analysisa 
                          Rice                                               Sorghum                
Variables (1) (2) (3) (4) (5) (6) 
CO2 0.0129 

(0.644) 
0.0149 
(0.747) 

-0.0117 
(-0.576) 

0.0877*** 
(4.149) 

0.0878*** 
(4.154) 

0.0844*** 
(3.886) 

CO2-squared 0.0000 
(0.972) 

0.0000 
(0.362) 

0.0000 
(1.212) 

-0.0000* 
(-2.199) 

-0.0000** 
(-2.210) 

-0.0000* 
(-2.082) 

Temperature 0.2760*** 
(3.340) 

0.1590* 
(1.816) 

0.1030 
(1.181) 

0.4180*** 
(5.532) 

0.4120*** 
(5.165) 

0.4040*** 
(5.025) 

Temp-squared -0.0077*** 
(-2.83) 

-0.0079*** 
(-2.881) 

-0.0069** 
(-2.550) 

-0.0032 
(-1.259) 

-0.0032 
(-1.264) 

-0.0031 
(-1.223) 

CO2 × Temp 0.0000 
(0.172) 

0.0004** 
(2.522) 

0.0005*** 
(3.088) 

-0.0012*** 
(-9.950) 

-0.0012*** 
(-8.083) 

-0.0011*** 
(-7.894) 

Constant -6.70* 
(-1.818) 

-5.51 
(-1.496) 

-0.36 
(-0.0961) 

-19.48*** 
(-5.072) 

-19.43*** 
(-5.049) 

-18.78*** 
(-4.737) 

Observations 2,013 2,013 2,013 1,720 1,720 1,720 

Adjusted R2 0.592 0.595 0.602 0.300 0.299 0.299 

Countries 41 41 41 39 39 39 

GDP/capita  no yes yes no yes yes 

Human capital no no yes no no yes 
a See notes on Table 4. 

3.2 Marginal Effects 

The equations of the marginal effects for each of the fully-specified models (3) and (6) in 

Tables 4 through 6 are provided in Table 7. These are then evaluated at the average levels of CO2 

and temperature so that we can isolate the main effects of these two climate variables on each type 

of crop. The marginal effects of temperature on crop yields have the a priori expected signs for 

each crop, with rice having the most severe diminishing returns based on the interaction term. We 

then compute tipping points by setting the first-order partial derivatives with respect to both CO2 

and temperature equal to zero and solve for CO2 and temperature, respectively. This gives us the 

tipping points at which an increase in temperature or CO2 leads to falling crop yields. 
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Table 7: Marginal Effects for CO2 and Temperature by Cropa 

Crop 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐶𝐶𝐶𝐶2�  𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕�  

Wheat 0.187 – 0.000472×CO2 – 0.000252×(T–T̅) 0.145 – 0.00728×T – 0.000252×(CO2– 2CO ) 

Maize –0.0323 + 0.0001896×CO2 – 0.000715×(T–T̅)  0.246 – 0.00416×T – 0.000715×(CO2– 2CO ) 

Soybean 0.0705 – 0.0001692×CO2 – 0.000311×(T–T̅) 0.0921 – 0.001766×T – 0.000311×(CO2– 2CO ) 

Rapeseed 0.0233 – 0.000000572×CO2 – 0.000426×(T–T̅)  0.171 – 0.00456×T – 0.000426×(CO2– 2CO ) 

Rice –0.0117 + 0.0000692×CO2 +0.000462×(T–T̅) 0.103 – 0.01388×T – 0.000426×(CO2– 2CO ) 

Sorghum 0.0844 – 0.0001258×CO2 – 0.00114×(T–T̅) 0.404 – 0.00624×T – 0.00114×(CO2– 2CO ) 

a Marginal effects are derived from the final specifications of regression models in columns (3) and (6) in each of 
Tables 4, 5 and 6. Parameters that are underlined indicate that these are statistically insignificant at the 10% level or 
better. The marginal effect of CO2 (temperature) can be evaluated at the average level of temperature (CO2) so as to 
isolate the main effects. 

We can compute tipping points as estimates of parameter values using their averages 

computed from the regression models. For example, the tipping point for CO2 takes the following 

functional form: 

CO2 = –[a + c×(T – T̅)] / b, 

where a and b are the linear and quadratic terms associated with CO2, and c is the 

coefficient for the interaction term between CO2 and temperature. We use sample data for the 

demeaned temperature term, and the same for the CO2 in the analogous tipping point for 

temperature: 

T = –[d + f×(CO2 – 𝐶𝐶𝐶𝐶2�����)] / e, 

where, similarly, d and e are the linear and quadratic terms associated with temperature, 

and f (=c) is the coefficient for the interaction term between CO2 and temperature. The results for 

estimated tipping points at average values of CO2 and temperature are reported in Table 8.  
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Table 8: Yield Tipping Points, CO2 and Temperaturea 
Crop CO2 (ppm)a Temperature (oC) 
Wheat 396.2 19.9 
Maize NA NA 
Soybean 416.7 NA 
Rapeseed NA NA 
Rice NA NA 
Sorghum 670.9 NA 

a NA reflects the fact that yields are not sensitive to changes in CO2. 

The lack of statistical significance in our tipping points is indicative of the fact that we are 

not properly identifying this relationship by using surface air temperatures. As for wheat, we are 

measuring a combination of winter and spring wheat; although they are typically the same cultivar, 

there are clear differences in the temperatures at which each crop is grown. The tipping point for 

wheat is the only one calculated using statistically significant parameters. The economic 

significance of 19.9°C is meaningless as this would imply that we should already be seeing 

negative impacts on wheat yields; however, this is not the case. Figures 4 and 5 show plots of the 

marginal effects, and hence the tipping points, at varying levels of CO2 and temperature. Though 

these tipping points should be taken with a grain of salt due to the lack of significance. 

Again, from Table 7, two of the marginal effects (maize and rice) have the incorrect signs 

on the linear term. For rice, the linear term in the marginal effect is positive, which implies that 

the CO2 fertilization is increasing with CO2. This is inconsistent with the nature of the CO2-

fertilization effect and leads us to recommend that there should be further research in rice-specific 

crop techniques in different environments to truly uncover the underlying relationship. We are not 

entirely sure why the sign of the marginal CO2 effect for maize is incorrect, but it is likely a result 

of the lack of regional CO2 data. With respect to the other marginal effects, we get CO2 tipping 

points that exhibit statistical significance for wheat, soybean and sorghum at 396.2 ppm, 416.7 

ppm, and 670.9 ppm, respectively, although these results need to be investigated further. Similar   
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Figure 4: Temperature Effects on Crop Yields at differing levels of CO2 

 to the marginal temperature effect for wheat yields, a tipping point of 396.2 ppm also implies that 

we should be witnessing damages—these are inconsistent with the reality that crop yields have 



23 | P a g e  
 

continually risen. It is clear that we are unable accurately to determine the tipping point for 

soybean; however, given crop science research that points towards sustained but diminishing 

positive CO2 effects, it is important to consider why this is the case. 

  

  

  

Figure 5: CO2-Fertilization Effects on Crop Yields at Different Temperatures 
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Further research using regional CO2 data is an obvious next step, because, at face value, 

the above tipping points imply that CO2 is already having negative effects on wheat and soybean 

yields, which is not borne out by field trials and on-farm yields in many regions (McLachlan et al. 

2020). This would not explain why industrial farming techniques include consistently pumping 

CO2 into greenhouses to amplify the yields of these crops, leading us to believe that global CO2 is 

simply not a good enough proxy for identifying crop-specific regional effects on crop yields. 

What can be gathered from the present analysis is the fact that the CO2-fertilization effect 

is prominent and is not being properly accounted for elsewhere. The negative impacts of global 

warming on food security is likely overstated as a result of overlooking CO2 as a determinant of 

crop yields. In the same sense that farmers pump CO2 into greenhouses to create an artificial 

environment, the globe will likely start to resemble these optimal environments as time progresses.  

5. Conclusions 

Does climate change lead to greater food insecurity? This is a difficult question to answer. 

Food security might be compromised at the regional level, but not at the global level, or it might 

be compromised at both scales. Increasing concentrations of atmospheric CO2 can improve 

agricultural productivity, enabling crops to better utilize nutrients, including water. Higher levels 

of CO2 also make crops less susceptible to drought. While droughts might increase in some regions 

of the globe, overall a warmer atmosphere holds more moisture leading to increased rainfall. 

Nonetheless, there remains a fear that, as temperatures continue to rise with increasing CO2, the 

CO2-fertilization effect will be offset by too much heat. Indeed, using experimental data, Challinor 

et al. (2014) found temperature was the dominant explanatory factor explaining both positive and 

negative changes in crop yields, with precipitation and CO2 fertilization playing a minor albeit 

yield-enhancing role. Our results based on historical, country-level crop yield data provide similar 
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evidence regarding CO2 and temperatures. However, we are unable to identify potential tipping 

points where further increases in atmospheric CO2 and/or temperatures cause crop yields to 

decline.  

The empirical evidence indicates that crop yields (t/ha) have increased steadily since the 

1960s. Average global yields of maize have increased by 2.0% annually over the period 1961-

2016, rice by 1.7%, wheat by 2.1%, sorghum by 0.9% and soybeans by 1.6%. Yet, the majority of 

scientists believe that at higher temperatures, the adverse effect of heat on crop yields will 

eventually offset the benefits of CO2 fertilization. The U.S. National Climate Assessment report 

(USGCRP 2018) projects that, by mid-century (2036-2065), crop yields will decline by “5% to 

over 25% below extrapolated trends broadly across the region for corn, and more than 25% for 

soybeans in the southern half of the region.” Notice that the report does not suggest that crop yields 

will fall; rather, U.S. crop yields are expected to continue trending upwards, but productivity 

growth will be below what it would be in the absence of climate change. One can only conclude 

that the evidence regarding the impact of climate change on agriculture is a matter of interpretation, 

dependent on which studies are chosen to support one’s viewpoint and how the evidence is 

presented. 

Future technological change remains the greatest unknown factor. New weather-indexed 

insurance products are increasingly becoming available, which will incentivize farmers to adapt to 

climate change by taking risks pertaining to new crops and cropping methods (Kramer and 

Ceballos 2018). Global positioning satellites (GPS) can be used to guide equipment movement, 

while drones can be used to identify fungal and other pest invasions during the growing season, 

thereby enabling swift and effective targeting of chemical and fertilizer applications and optimal 

timing of harvests. New irrigation technologies that rely on swift and timely computer analyses, 

and water harvesting from early-morning fog (which occurs in some arid regions), are further 
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examples of climate smart farming. These and other farm management technologies improve 

agricultural financial and environmental outcomes.  

The greatest potential of future technological changes will likely come from biology. Plant 

breeding and genetic engineering will lead to different crops and crop varieties that produce higher 

yields and are more resilient to weather extremes, such as droughts, and offer protection against 

pests, fungus, and disease. Likewise, research can be expected to provide chemicals or biological 

agents that target weeds and insect pests, while being more benign in their environmental impact. 

Higher yield crops currently grown in temperate latitudes are increasingly adapted to tropical 

conditions where hours of sunlight are shorter but temperatures higher.  

While it is difficult to predict what the future might hold in store for agriculture, one can 

be optimistic that technological changes will greatly improve the ability of agricultural producers 

to adapt to climate change. Only when the scope for technological improvements is ignored might 

global warming lead to famines and starvation in the future. 
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